
MATH253X-F01

Fall 2019
Midterm Exam 2 Name: Answer Key

Instructions. You have 60 minutes. Closed book, closed notes, no calculator. Show all your work in order
to receive full credit.

1. Consider the limit

lim
(x,y)→(0,0)

x2 + 3y2

3x2 + y2
.

Either show it does not exist, or give strong evidence for suspecting it does.

Solution: Setting x = 0 and letting y → 0, we have lim
y→0

3y2

y2
= 3. Setting y = 0 and letting x → 0, we

have lim
x→0

x2

3x2
=

1

3
. Since these limits are different, the original multivariable limit does not exist.

2. The following table gives some information about a function f(x, y):

(x, y) f fx fy
(−1, 3) 3 2 −1
(0, 1) −5 −1 3
(3, 4) 1 4 −2

(a) Use the chain rule to compute
dg

dt
(0) where:

g(t) = f(t2 − t+ 3, 2e−3t + 2).

Solution: We have x(t) = t2 − t + 3 and y(t) = 2e−3t + 2 so x(0) = 3 and y(0) = 4. Therefore,
g(0) = f(3, 4) and

dg

dt
(0) = fx(3, 4)

dx

dt
(0) + fy(3, 4)

dy

dt
(0) = 4

[
2t− 1

]
t=0

− 2
[
2(−3)e−3t

]
t=0

= 4(−1)− 2(−6) = 8 .

(b) Give an equation for the linear (tangent plane) approximation to f at the point (−1, 3), and use it
to estimate f(−1.1, 3.2).

Solution: The linear approximation is:

L(x, y) = f(−1, 3) + fx(−1, 3)(x+ 1) + fy(−1, 3)(y − 3) ⇔ L(x, y) = 3 + 2(x+ 1)− (y − 3) .

So the approximate value of f(−1.1, 3.2) is given by:

L(−1.1, 3.2) = 3 + 2(−1.1 + 1)− (3.2− 3) = 3− 0.2− 0.2 = 2.6 .

3. Evaluate the integral ∫ 4

0

∫ 2

√
y

e
(
x3+1

)
dx dy

fully, by first drawing the region of integration, and then reversing the order of integration.

Solution: The bounds indicate that we have
√
y ≤ x ≤ 2 and 0 ≤ y ≤ 4. The inner bounds being in

x, that means that if we drill horizontally left to right, we enter our region on the curve x =
√
y, i.e.

y = x2, and exit it on the line x = 2. Furthermore, the shadow of the region onto the y-axis covers [0, 4]:
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x

y

0

1

1

So reversing the order of integration, we have:∫ 4

0

∫ 2

√
y

e(x
3+1) dx dy =

∫ 2

0

∫ x2

0

e(x
3+1) dy dx =

∫ 2

0

[
y
]y=x2

y=0
e(x

3+1) dx =

∫ 2

0

x2e(x
3+1) dx =

∣∣∣∣ u = x3 + 1
du = 3x2 dx

∣∣∣∣
=

∫ x=2

x=0

eu

3
du =

[
eu

3

]x=2

x=0

=

[
e(x

3+1)

3

]2
0

=
e9 − e

3

4. Find and classify (using the Second Derivatives Test) all critical points of

f(x, y) = x2y − 2xy + y2 − 3y + 1.

Solution: The gradient is

∇f = 〈fx, fy〉 =
〈
2xy − 2y, x2 − 2x+ 2y − 3

〉
is defined everywhere and when setting it to the zero vector, we get fx = 0 = 2y(x− 1) for:

• either y = 0 then plugging into fy = 0 that means x2 − 2x− 3 = 0 so we get x = 3 or x = −1;

• or x = 1 then plugging into fy = 0 that means 1− 2 + 2y − 3 = 0 so y = 2.

Hence we found three critical points: (3, 0) , (−1, 0) , (1, 2) .

To classify them, we use the Second Derivatives Test:

fxx = 2y , fyy = 2 , fxy = 2x− 2 ⇒ d(x, y) = 4y − 4(x− 1)2

• d(3, 0) = 4(0)− 4(4) < 0 so saddle point at (3, 0, 1) ;

• d(−1, 0) = 4(0)− 4(4) < 0 so saddle point at (−1, 0, 1) ;

• d(1, 2) = 4(2)− 4(0) > 0 and fxx = 4 > 0 so relative minimum at (1, 2) .

5. Give an equation for the tangent plane to the surface

xy

y + z
+ e−z ln(x+ 2y) = 3

at the point (3,−1, 0).
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Solution: Let F (x, y, z) =
xy

y + z
+ e−z ln(x+ 2y). Then we find

∇F (x, y, z) =

〈
y

y + z
+

e−z

x+ 2y
,
x(y + z)− xy(1)

(y + z)2
+

2e−z

x+ 2y
,

−xy

(y + z)2
− e−z ln(x+ 2y)

〉
=

〈
y

y + z
+

e−z

x+ 2y
,

xz

(y + z)2
+

2e−z

x+ 2y
,

−xy

(y + z)2
− e−z ln(x+ 2y)

〉
⇒ F (3,−1, 0) =

〈
−1

−1 + 0
+

1

3− 2
,

3(0)

(−1 + 0)2
+

2

3− 2
,

−3(−1)

(−1 + 0)2
− ln(3− 2)

〉
= 〈2, 2, 3〉

The tangent plane is thus given by

2(x− 3) + 2(y + 1) + 3(z − 0) = 0,

or
2x+ 2y + 3z = 4 .

6. Use polar coordinates to find the volume of the solid bounded by the cone z =
√

x2 + y2 and the top
half of the sphere x2 + y2 + z2 = 6.

x
y

z

Solution: If we solve for z in the top half of the sphere, we have z =
√
6− x2 − y2 or using polar

z =
√
6− r2 and that is our top surface whereas the cone z =

√
x2 + y2 i.e. using polar z = r (for

r ≥ 0) is on the bottom. The base or shadow R in the xy-plane is a disk with radius satisfying√
6− r2 = r =⇒ 6− r2 = r2 =⇒ r2 = 3

So here r =
√
3 and the volume is:

V =

∫∫
R

√
6− x2 − y2 −

√
x2 + y2 dA

=

∫ 2π

0

∫ √
3

0

[√
6− r2 − r

]
r dr dθ

=

(∫ 2π

0

dθ

)(∫ √
3

0

r
√
6− r2 − r2 dr

)

=
[
θ
]2π
0

[
−1

2

(
2

3

)
(6− r2)

3
2 − r3

3

]√3

0

= 2π

[
−1

3
(3
√
3)− 3

√
3

3
+

1

3
(6
√
6) + 0

]
= 4π(

√
6−

√
3) .
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7. A flat triangular plate is bounded by the lines y = 2− 2x, y = 2 + 2x and the x-axis, where x, y are in
m. The mass density is given by

ρ(x, y) = y2 kg/m
2
.

y = 2− 2x

y = 2 + 2x

x

y

1

1

From the symmetry of the plate and the density, you can see that the center of mass of the plate must
be on the y-axis, so x̄ = 0.

(a) Give an expression involving integrals for ȳ, including appropriate limits of integration.

Solution: Setting up the integrals is easier in dx dy since it requires a split in dy dx. Drilling
horizontally left to right, we always enter the plate on y = 2 + 2x, that is x = y

2 − 1 and we always
exit the plate on y = 2 − 2x, that is x = 1 − y

2 . The projection of the plate onto the y-axis covers
[0, 2]. So we have:

ȳ =
Mx

m
=

∫∫
R

yρ(x, y) dA∫∫
R

ρ(x, y) dA

=⇒ ȳ =

∫ 2

0

∫ 1− y
2

y
2−1

y3 dx dy∫ 2

0

∫ 1− y
2

y
2−1

y2 dx dy

(b) The total mass of the plate is m =
4

3
kg. Use this to calculate ȳ.

Solution:

Mx =

∫ 2

0

∫ 1− y
2

y
2−1

y3 dx dy =

∫ 2

0

[
xy3
]x=1− y

2

x= y
2−1

dy

=

∫ 2

0

(
1− y

2
−
(y
2
− 1
))

y3 dy =

∫ 2

0

(2− y)y3 dy

=

∣∣∣∣ u = 2− y du = −dy

dv = y3 dy v = y4

4

∣∣∣∣ = [ (2− y)y4

4

]2
0

−
∫ 2

0

−y4

4
dy

= 0− 0 +

[
y5

20

]2
0

=
32

20
− 0 =

8

5

⇒ ȳ =
Mx

m
=

8
5
4
3

=
8

5

(
3

4

)
⇒ ȳ =

6

5
m

8. Use Lagrange multipliers to find the maximum product of two positive numbers satisfying x2 + y = 6.

Solution: We have that our objective function is the product so f(x, y) = xy and the constraint is
g(x, y) = x2 + y = 6. Therefore,

∇f = λ∇g =⇒ 〈y, x〉 = λ 〈2x, 1〉 =⇒

{
y = 2λx

x = λ
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Substituting λ = x in the first equation, we get: y = 2x2. Now plugging that into the constraint:

x2 + 2x2 = 6 ⇒ 3x2 = 6 ⇒ x2 = 2

and we have a restriction for positive numbers so x =
√
2 and thus y = 2x2 = 4. This in turns means

that the maximum product:

fmax = f(
√
2, 4) = 4

√
2 .

9. Let f(x, y) = x2y − x+ y2.

x

y

z

(a) Compute the directional derivative of f when moving in the direction of −j when you are at the
point (1,−1). Interpret your result in terms of change in values of f .

Solution: We have that:

∇f(x, y) = 〈fx, fy〉 =
〈
2xy − 1, x2 + 2y

〉
=⇒ ∇f(1,−1) =

〈
2(1)(−1)− 1, 12 + 2(−1)

〉
= 〈−3,−1〉 .

Note that −j is already a unit vector so the directional derivative is:

D−jf(1,−1) = ∇f(1,−1) · (−j) = 〈−3,−1〉 · 〈0,−1〉 = 1 .

Since the directional derivative is positive, values of f will increase in the direction of −j from (1,−1) .

(b) Give the direction and magnitude of maximum decrease of f when at the point (1,−1).

Solution: Direction of maximum decrease will be opposite the gradient and magnitude will be its
norm.

direction: 〈3, 1〉 , magnitude:
√
10

(c) Fully set up bounds and integrand for computing the surface area of f over the region [−1, 2]×[−2, 1].
DO NOT EVALUATE.

Solution:

SA =

∫∫
R

√
1 + f2

x + f2
y dA ⇒ SA =

∫ 2

−1

∫ 1

−2

√
1 + (2xy − 1)2 + (x2 + 2y)2 dy dx


