ZIRBES MATH 252X MIDTERM # 2

SPRING 2018

Your Name Instructor Name (Zirbes)
Start Time End Time
Page Total Points Score
2 20
3 14
4 14
5 16
6 18
7 18
8 (5 Extra Credit)
Total 100

o You will have 1 hour to complete the test.

o This test is closed notes and closed book and you may not use a calculator.

e Label any diagrams so as to indicate axes labels and scale.

o In order to receive full credit, you must show your work. Please write out your computations on the

€Xxam paper.

o Clearly explain your answers using complete sentences when applicable. Cite any relevant tests or

theorems by name.

o PLACE A BOX AROUND ’ YOUR FINAL ANSWER |to each question where appropriate.




1. (12 points) Let a,, =
(a) List the first two terms in the sequence {a,, }.
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(b) Determine whether the sequence {a, } converges.
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(c) Let S = Z ay,. Calculate s1, and s,, the first two terms of the sequence of partial sums.
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(d) Does the series S = Z a, converge or diverge? Explain!
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2. (8 points) Determine whether the series is conditionally convergent, absolutely convergent, or diver-
gent. Explain why in each case.
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3. (14 points) Determine if the series below converge or diverge. Full credit will only be given for
answers that include (1 pt) the name of the test being applied, (5 pts) a complete application of
the test, including evidence that the conditions have been met, and (1 pt) a clear conclusion with

justification.
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4. (14 points) Determine if the series below converge or diverge. Full credit will only be given for
answers that include (1 pt) the name of the test being applied, (5 pts) a complete application of
the test, including evidence that the conditions have been met, and (1 pt) a clear conclusion with
justification.
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5. (16 points) Find the radius and interval of convergence of the following series. If applicable, clearly
explain why the series does or does not converge at the endpoints.
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6. (18 points) Find the sum of the following series exactly. If the series diverges explain why.
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7. (10 points) Given f(x) = L

(a) Find a power series for f(z) using a geometric series and give the radius of convergence.
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(b) Using your result from (a), evaluate / f(z )dx as a power series. State the radius of convergence.
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8. (8 points) Find the Taylor Series for f(z) = — centered at a = 2 using the definition. You must write

your answer using summation notation. Simplify and cancel if applicable.
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9. (5 points extra credit) Taylor’s Inequality, states that if | f("+1) (z)| < M, then
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(a) (2 points) Given f(z) = Xgh' ata= | find the3rd degree Taylor polynomial 75(x) 9
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(b) (3 points) Use Taylor’s Inequality to estimate the accuracy of the approximation f(z) ~ T3(x)
when z is in the interval [+0.5, 1.5 ]
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