
VERHOEF & ZIRBES MATH 252X FINAL EXAM FALL 2018

Your Name

Start Time End Time

Page Total Points Score

2 10

3 10

4 11

5 13

6 10

7 10

8 8

9 10

10 8

11 10

Total 100

• You will have 2 hours to complete the test.

• This test is closed notes except for a 4 by 6 inch note card with hand written notes on both sides.

• No calculators allowed.

• Label any diagrams so as to indicate axes labels and scale.

• In order to receive full credit, you must show your work. Please write out your computations on the
exam paper.

• When a problem asks you to set up only you do NOT need to simplify the integrand (the expression
inside the integral sign) at all.

• When determining convergence or divergence of a series, state the test that is being applied. Common
abbreviations are acceptable. PLACE A BOX AROUND YOUR FINAL ANSWER to each question

where appropriate.



1. (20 points) Evaluate the following integrals.
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2. (11 points) Let R be the region bounded by the functions f(x) = 3x� x2 and g(x) = x.

(a) (2 points) Graph the region and then set up, but do not solve, an integral that gives the area of
R.

(b) (3 points) Set up, but do not solve, an integral that finds the volume of the solid generated when
R is rotated about the y-axis.

(c) (3 points) Set up, but do not solve, an integral that finds the volume of the solid generated when
R is rotated about the line y = �1.

(d) (3 points) The region R is the base of a solid. For this solid, each cross section perpendicular to
the x-axis is a square. Set up, but do not solve, an integral that gives the volume of this solid.
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3. (4 points) Let an = tan�1

✓
n2 + 1

n2 + n+ 2

◆
.

(a) Determine whether the sequence an converges or diverges. If it is convergent determine what
it converges to.

(b) Determine whether the series
1X

n=1

an converges or diverges. Justify your answer.

4. (5 points) Find the sum of the following series exactly.
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32n+110�n

5. (4 points) Find the Taylor series for the function f(x) = 1/x centered at the point a = �2 using the
definition. Give your answer in summation notation.
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6. (8 points)

(a) (4 points) Determine whether the improper integral
Z 1

1

lnx

x
dx converges or diverges. Evaluate

it if it is convergent.

(b) (4 points) Use the integral test, and your answer from (a), determine whether
1X

n=1

lnn

n
converges

or diverges. You must explicitly verify that the integral test applies to this series. No credit will
be given if another test is used.

7. (2 points) Determine the number of terms in the series
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8. (10 points) Determine whether the following series converge or diverge. You must clearly explain
your reasoning and state any relavent tests by name.

(a)
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9. (8 points) Find the radius of convergence and the interval of convergence of the following series.
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10. (10 points) Let R be the region bounded by y = 3 sin(x) and y = 0, 0  x  ⇡/2.

(a) (2 point) Sketch the region and find the AREA of R here in PART A.

(b) (8 points) Find the centroid of the the region R.
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11. (9 points) Consider the parametric curve where x = a sin3 ✓ and y = a cos3 ✓. A graph is given below
in part (a).

(a) (2 points) Find and simplify
dy

dx
.

(b) (2 points) Determine the location of any vertical tangents. Give the ✓ values only.

(c) (3 points) Set up, but do not solve, an integral that gives the area of the region.

(d) (3 points) Set up, but do not solve, an integral that gives the length of the curve.
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12. (9 points) Consider the curve r = 4 sin(3✓).

(a) (3 points) Sketch the curve r = 2 cos(3✓).

(b) (4 points) Find the area enclosed by one petal.

(c) (2 points) Set up, but do not solve, an integral that gives the length of the polar curve.
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