
ZIRBES MATH 252X MIDTERM # 2 SPRING 2018

Your Name Instructor Name (Zirbes)

Start Time End Time

Page Total Points Score

2 20

3 14

4 14

5 16

6 18

7 18

8 (5 Extra Credit)

Total 100

• You will have 1 hour to complete the test.

• This test is closed notes and closed book and you may not use a calculator.

• Label any diagrams so as to indicate axes labels and scale.

• In order to receive full credit, you must show your work. Please write out your computations on the

exam paper.

• Clearly explain your answers using complete sentences when applicable. Cite any relevant tests or

theorems by name.

• PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.



1. (12 points) Let an =
2n+ 1

5n+ 3
for n � 1.

(a) List the first two terms in the sequence {an}.

(b) Determine whether the sequence {an} converges.

(c) Let S =
1X

n=1

an. Calculate s1, and s2, the first two terms of the sequence of partial sums.

(d) Does the series S =
1X

n=1

an converge or diverge? Explain!

2. (8 points) Determine whether the series is conditionally convergent, absolutely convergent, or diver-

gent. Explain why in each case.
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3. (14 points) Determine if the series below converge or diverge. Full credit will only be given for

answers that include (1 pt) the name of the test being applied, (5 pts) a complete application of

the test, including evidence that the conditions have been met, and (1 pt) a clear conclusion with

justification.
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4. (14 points) Determine if the series below converge or diverge. Full credit will only be given for

answers that include (1 pt) the name of the test being applied, (5 pts) a complete application of

the test, including evidence that the conditions have been met, and (1 pt) a clear conclusion with

justification.
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5. (16 points) Find the radius and interval of convergence of the following series. If applicable, clearly

explain why the series does or does not converge at the endpoints.
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6. (18 points) Find the sum of the following series exactly. If the series diverges explain why.
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7. (10 points) Given f(x) =
x

x3 + 8
.

(a) Find a power series for f(x) using a geometric series and give the radius of convergence.

(b) Using your result from (a), evaluate

Z
f(x)dx as a power series. State the radius of convergence.

8. (8 points) Find the Taylor Series for f(x) =
1

x
centered at a = 2 using the definition. You must write

your answer using summation notation. Simplify and cancel if applicable.
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9. (5 points extra credit) Taylor’s Inequality, states that if |f (n+1)(x)|  M , then

|Rn(x)| 
M

(n+ 1)!
|x� a|n+1.

(a) (2 points) Given f(x) = sin(2x) at a = ⇡/4 find the 3rd degree Taylor polynomial T3(x).

(b) (3 points) Use Taylor’s Inequality to estimate the accuracy of the approximation f(x) ⇡ T3(x)
when x is in the interval [0,⇡/2].
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